Oxydes de Plomb. II. Etude Structurale à 5 K de la Phase Orthorhombique de l'Oxyde Pb₃O₄

JEAN RAYMOND GAVARRI, GILBERT CALVARIN, ET DOMINIQUE WEIGEL

E. R. A. au C.N.R.S. No 456, Laboratoire de Chimie-Physique du Solide, CSP Université Paris-Nord et Ecole Centrale des Arts et Manufactures, 92290 Chatenay-Malabry, France

Received June 28, 1974

The structure of Pb₃O₄ at 5 K has been studied from X-ray and neutron powder diffraction patterns. The cell is orthorhombic: a = 9.124 Å, b = 8.467 Å, and c = 6.566, Å. Twelve coordinates of lead and oxygen atoms have been refined from spacegroup *Pbam*. From neutron diffraction data, an *R* value of 0.030 has been obtained, while the *R* value from X-ray diffraction data is 0.06. The interatomic Pb(IV)–O and Pb(II)–O distances are compared with those found in the quadratic structure. The Pb(II)–O bonds are longer than those found at 293 K.

1. Introduction

De récents travaux réalisés au laboratoire par Garnier (1) ont montré que la maille de l'oxyde de plomb Pb_3O_4 , quadratique à température ambiante, est orthorhombique au-dessous de 160 K. L'écart entre les paramètres a et b varie de manière importante avec la température.

Connaissant la structure de Pb_3O_4 à température ambiante (2), nous avons déterminé sa structure à 5 K, en utilisant la diffraction des neutrons et celle des rayons X par un échantillon polycristallin maintenu à une température proche de celle de l'hélium liquide.

2. Partie Experimentale

L'échantillon polycristallin utilisé est un produit Merck recuit pendant 4 jours à 480°C et à l'air libre, et dont les pics de diffraction (*hkl*) avec $h \neq k$ présentent de très faibles élargissements résiduels à la température ambiante (2).

a. Diffraction des Neutrons

L'échantillon est placé dans un cylindre en vanadium de 8 mm de diamètre (dimension

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain imposée par le cryostat) et est maintenu pendant toute la durée de l'expérience à une température de 4.2 K.

Le diffractogramme a été enregistré sur un diffractomètre à neutrons du réacteur EL3 du CEN de Saclay.

Les comptages sont effectués avec un pas à pas de 5/100 de degré 2Θ , le compteur "moniteur" enregistrant 400 000 coups sur le faisceau incident lors de chaque comptage.

Quarante raies ou groupes de raies ont ainsi pu être mesurés entre 5 et 44 degrés 2Θ , pour une longueur d'onde de 1.140 Å.

Les diffractogrammes à température ambiante et à 5 K, réalisés dans des conditions d'appareillage identiques, ont déjà fait l'objet d'une publication (3).

b. Diffraction des Rayons X à T = 5 K

Le diffractogramme X à 5 K a été réalisé avec un cryostat conçu pour des expériences de diffraction des rayons X entre 4 et 300 K. La température au niveau de l'échantillon est régulée à 0.05 K près.

L'échantillon est une pastille de poudre légèrement comprimée dans la cavité cylindrique ($\phi = 20 \text{ mm}, h = 2 \text{ mm}$) d'un porteéchantillon en cuivre. Placé dans un capot qui l'isole de l'enceinte sous vide, l'échantillon est refroidi par conduction solide et gazeuse, ce qui assure une température uniforme sur tout l'échantillon (gradient de température inférieur à 1 K).

Le diffractomètre utilisé est un prototype CGR, conçu pour atteindre une précision de 2×10^{-3} degré sur les angles de Bragg Θ (4). Nous avons adapté le cryostat sur ce diffractomètre. La position de la face avant de l'échantillon est réglable, par rapport au plan médian vertical du faisceau de rayons X, à l'aide d'une table à rouleaux et d'un système "roue-vis sans fin," fixé sur le plateau supérieur du goniomètre.

Le diagramme a été enregistré avec les radiations $K\alpha_1-K\alpha_2$ du cuivre, le compteur se déplaçant avec un mouvement continu de 1° Θ en 15 minutes.

Le dédoublement des raies (h, k, l) avec $h \neq k$ de la phase quadratique, en deux pics (hkl) et (khl) dans la phase orthorhombique s'accompagne d'un élargissement dissymétrique de ces raies suggérant l'existence de distorsions dans le réseau cristallin.

L'enregistrement d'un diffractogramme à la température ambiante et dans des conditions d'appareillage identiques a permis de tenir compte des orientations préférentielles des grains de poudre parallèlement à certaines familles de plans réticulaires.

3. Détermination de la Structure

a. Détermination des Paramètres de la Maille Orthorhombique

La détermination des paramètres a, b, et c de la maille orthorhombique par une méthode dite "des moindres carrés"¹ a été faite à partir de la valeur de 21 angles de Bragg Θ_{hkl} mesurés sur le diagramme de diffraction des rayons X.

Les raies (hkl) avec $h \neq k$ étant élargies donc plus imprécises ont été affectées dans le calcul d'un poids inférieur à celui des autres raies.

¹ La méthode minimise la quantité $M = \sum_{i} w_{i}(\theta)$ $(Q_{cal}^{i} - Q_{obs}^{i})^{2}$, où $Q_{cal}^{i} = h^{2}/a^{2} + k^{2}/b^{2} + l^{2}/c^{2}$ et $Q_{obs}^{i} = 4\sin^{2}\theta/\lambda^{2}$ et où $w_{i}(\theta)$ est une fonction de pondération variant avec θ . L'écart quadratique moyen obtenu sur les angles Θ_{hkl} est de 2.5 × 10⁻³ degré et les paramètres affinés sont les suivants: a = 9.124 (1) Å, b = 8.467 (1) Å, c = 6.5667 (0.5) Å avec entre parenthèses les écarts-types en 10⁻³ Å.

Les écarts-types relatifs $\sigma(a)/a$, $\sigma(b)/b$, et $\sigma(c)/c$ sont donc de l'ordre de 1×10^{-4} et pourront être négligés lors du calcul des distances interatomiques de la structure.

b. Détermination des Coordonnées Atomiques

(i) Programme d'Affinement des Coordonnées Atomiques. Le programme d'affinement de paramètres utilisé (5) minimise la quantité

$$M = \sum_{i} w_i (I_{cal}^i - I_{obs}^i)^2.$$

 I_{cal}^i et I_{obs}^i sont respectivement les valeurs calculées et observées (après normalisation) des intensités des raies (*hkl*) ou groupes de raies séparés, repérés par l'indice *i*;² w_i est une fonction de pondération.

Le programme calcule le facteur d'écart final,

$$R = \left(\sum_{i} \left| I_{cal}^{i} - I_{obs}^{i} \right| \right) \left(\sum_{i} I_{cal}^{i} \right)^{-1}.$$

On désignera par R_N le facteur relatif à la diffraction des neutrons et R_X celui relatif à la diffraction des rayons X.

Le programme calcule en outre les écarts quadratiques moyens sur les paramètres affinés.

(ii) Exploitation des Résultats. L'indexation complète des deux diffractogrammes (rayons X et neutrons) montre que les extinctions sont celles des groupes Pbam (D_{2h}^9) centrosymétrique et Pba2 (C_{2n}^8) noncentrosymétrique.

Pba2 est un sous groupe de *Pbam* lequel est lui-même sous groupe de $P4_2/mbc$ (groupe de la structure à 293 K).

La structure exprimée à partir du groupe *Pba2* est constituée de 4 atomes Pb(IV) en position 2×2 (b), 8 atomes Pb(II) en position 2×4 (c), 16 atomes d'oxygène en position 4×4 (c), soit au total 20 coordonnées atomiques indépendantes.

² $I_{ca1}^{i} = \sum_{hkl} (LP) p_{hkl} |F_{hkl}|^{2}$ avec $L = 1/\sin\theta\sin2\theta$; $P = (1 + \cos^{2}2\theta)/2$ en diffraction X seulement; p_{hkl} facteur de multiplicité; F_{hkl} facteur de structure.

TABLEAU I

rableau i	I
-----------	---

Å tomes ^a	Coordonnées variables	Coordonnées initiales (structure à 293 K)	Atomes	Coordonnées $\begin{cases} x \\ y \\ z \end{cases}$	Ecart-type (×10 ⁻³)
Atomes	Coordonnees variables	a 275 K)		(0	
Ph(IV)	0 k z	0 ± 0.250	Pb(IV)	0.5	
Pb(II) ⁽¹⁾	$x, y, \frac{1}{2}$	$0.140, 0.163, \frac{1}{2}$		0.241	5
Pb(II) ⁽²⁾	x, y, 0	0.163, 0.860, 0		(0.1571	1.2
Oia	x, y, z	0.671, 0.171, 0.250	Pb(II) ⁽¹⁾	{ 0.1527	1.5
O _{2.a}	<i>x</i> , <i>y</i> , 0	0.137, 0.596, 0		0.5	
O _{2c}	$x, y, \frac{1}{2}$	0.096, 0.637, 1 /2		(0.1624	1.4
			Pb(II) ⁽²⁾	0.8655	1.5

^a Notations adoptées lors de l'étude à 293 K (2).

D'autre part, le groupe *Pbam* permet de décrire la structure à partir de 4 atomes Pb(IV) en position 4 (f), 8 atomes Pb(II) en position 4 (h) et 4 (g), 8 atomes d'oxygène en position 4 (h) et 4 (g), 8 atomes d'oxygène en position 8 (i), ce qui réduit à 12 le nombre de paramètres de position à déterminer.

Une approche de la structure a été réalisée à partir de ce dernier groupe, avec 40 données en diffraction des neutrons et 35 données en diffraction des rayons X.

Les 12 coordonnées variables et leur valeur initiale sont données dans le tableau I.

Après plusieurs cycles d'affinement sur différentes combinaisons de 5 à 7 paramètres de position, le facteur d'écart R_N passe de 15% à 4%. Les coordonnées des atomes d'oxygène étant fixées à ces nouvelles valeurs, un affinement à partir des données de diffraction des rayons X a confirmé les valeurs des coordonnées des atomes de plomb avec cependant des écarts-types sur ces coordonnées assez élevés (de l'ordre de 4×10^{-3}). Le facteur R_X vaut 0.06.

Un dernier cycle d'affinement portant sur les 12 coordonnées atomiques à la fois, à partir des données de diffraction des neutrons, a conduit au résultat exprimé par le tableau II et correspondant à un facteur R_N de 0.030.

L'étude de la structure dans le groupe *Pba2* noncentrosymétrique nécessiterait l'affinement de 20 coordonnées indépendantes: vu le peu de données expérimentales dont nous disposons, un tel calcul ne serait pas significatif.

	(z	
Pb(IV)	$\begin{cases} 0\\ 0.5\\ 0.241 \end{cases}$	5
Pb(II) ⁽¹⁾	$ \begin{cases} 0.1571 \\ 0.1527 \\ 0.5 \end{cases} $	5 1.2 1.5
Pb(II) ⁽²⁾	${0.1624 \\ 0.8655 \\ 0}$	1.4 1.5
O _{1a}	$\begin{cases} 0.6642 \\ 0.1655 \\ 0.2517 \end{cases}$	1.0 1.1 1.5
O _{2<i>a</i>}	$\begin{cases} 0.1263 \\ 0.6013 \\ 0.0 \end{cases}$	1.8 2.0
O _{2c}	$\begin{cases} 0.0951 \\ 0.6353 \\ 0.5 \end{cases}$	1.8 2.3

Dans la limite de notre expérience, la structure de Pb_3O_4 à 5 K peut donc être décrite à partir du groupe centrosymétrique *Pbam*, d'autant plus qu'un récent test d'optique de génération du deuxième harmonique, très sensible, a montré que le groupe noncentrosymétrique est très improbable (Le Person et J. C. Toledano, communication personnelle).

Le tableau III compare les intensités observées et calculées en diffraction des neutrons et rassemble les résultats concernant la diffraction des rayons X.

(iii) Remarques. La diffraction des rayons X a permis de confirmer les coordonnées des atomes de plomb. Un désaccord assez net existe cependant sur la coordonnée z de l'atome Pb(IV): la diffraction des rayons X conduit à z = 0.250 (6) alors que la diffraction des neutrons donne z = 0.241 (5). Il est donc possible que la valeur réelle soit intermédiaire, d'autant plus que l'écart-type relatif à cette coordonnée z (cf. tableau II) est élevé.

Pour les calculs de distances interatomiques nous avons retenu la valeur z = 0.241; en effet pour cette valeur le facteur R_N est égal à

Diffraction des rayons X			Diffraction des n	ction des neutrons	
d _{obs}	I/I ₀	h k l	I _{ca1}	$I_{\rm obs}$	
6.205	16.5	110	3046	3060	
	non observé	200	19.5 21.8	34	
		111	2.4) 21.0	51	
4.24 ^a	<1	020	1.2	14	
4.01 ^{<i>a</i>}	(210	36.4	34	
3.85ª	10 {	120	32.4	34	
3.735ª	l l	201	33	68	
	non observé	021	171	170	
3.426	80	211	2014	2002	
3.315	100	121	2432 2683	2700	
3.2835	8	002	251)		
3.1036	24	220	914	1030	
2.9024	68	112	1322 } 1850	1893	
2.863	56	310	528)		
		221	0.0 213	216	
2.696	37.5	130	213		
2.6645	32.5	202	369	340	
2.5942	20	311	$\binom{6}{192}$	192	
		022	186)		
	non observé	212	1546	1566	
2.501ª	2	131	$\frac{32}{1459}$ 1490	1498	
0.4604	1	122	1458)	254	
2.469"	1	320	293	200	
2,406*	<1 nen obsorvé	230	04	200	
2 2004	non observe	341	479)	07	
2,289"	20	221	183 1554	1650	
2 2550	20	231	502	1050	
2.2550		410	300)		
		410	299 301	306	
	_1 }	212	2) 72)		
	<1 }	312	00 711	608	
		401	620	070	
	(122	04)		
		132	053		
2 0804	15	330	95.5 1160	1140	
2.000	15	140	98	1110	
		113	14		
	<pre>}</pre>	041	0.6)		
2.0084		420	434 478	442	
2.000		203	43		
	16 {	331	71)		
1.975 ^a		322	460 886	875	
	1	141	409		
	í	023	14) 504	404	
	ł	232	490	494	
1.9221	32.5	213	618)		
		240	593 } 1252	1219	
		421	41)		

TABLEAU III

Diffraction des rayons X		Diffraction des		s neutrons	
dobs	I/I _o		h k l	I _{cai}	Iobs
1.90126	22		123	864	871
1.873"		(402	1170	1200
	22	{	241	(56) 163	140
1.8294		Ļ	412	107)	
		{	223	15	
1.776°	24	ł	042	1540 1559	1484
			510	4	
1 75044		(430	4046	
1.75044			142	329	
	66	{	340	01 4412	4426
			313	37.6	
			431	227	
1.71278	10	Į	422	360 587	599
		l	133	0.2	
		Ì	341	73	
	5	J	520	52 (373	206
	J)	150	96 (575	2,90
1.658^{a}		l	242	152)	
1.64176	14	{	004	$\frac{1881}{1930}$	1906
1 (0.17		ł	323	49)	0.7.4
1.624"			521	438	3/4
1 6109	21	}	121	3.3 261.5	170
1.019	21	Ì	255	36)	
		{	114	406 442	409
		č	403	8)	
1.5684	14	Į	512	1323 1332	1324
		Į	432	1.7	
1.55168		Ì	440	1342	
			413	520	
	16.5	$\left\{ \right.$	251	358	
		1	204	6 (2545	2590
		l	342	1	2570
1.533"		(530	307	
	15	ſ	024	0.0	
		l	043	11)	

TABLEAU III (Suite)

^a Ces valeurs sont imprécises et n'ont pas été utilisées pour calculer les paramètres de la maille. Par contre d'autres distances utilisées, très précises et inférieures à 1.53 Å, ne figurent pas dans ce tableau.

0.030 alors que pour la valeur fixée z = 0.250, R_N est égal à 0.032.

4. Description de la Structure et Comparaison avec la Structure à Température Ambiante

Le tableau IV compare les distances et les angles de la structure de Pb_3O_4 à T = 293 K et à T = 5 K.

Lors de l'étude de la structure à T = 293 K, un certain nombre de motifs caractéristiques

TABLEAU IV

		T = 293 K		T = 5 K	
Pb(IV)–O	{	2.20×4^{a} 2.13 ×2 $\langle 2.18 \rangle^{c}$		2.22 (5) ^b , 2.23 (5), 2.13 (5), 2.14 2.05 (2), 2.05 (2) <2.14>	4 (5)
Pb(II)–O	{ ⟨2.37⟩	2.21 ×4 2.34 ×2 2.73 ×2	{ { { { { { { { { { { { { { { { { { { {	Pb(II) ⁽¹⁾ -O _{1a} , $\times 2: 2.30$ (4) Pb(II) ⁽²⁾ -O _{1a} , $\times 2: 2.29$ (4) Pb(II) ⁽¹⁾ -O _{2a} : 2.26 (5) Pb(II) ⁽²⁾ -O _{2c} : 2.26 (5) Pb(II) ⁽¹⁾ -O _{2d} : 2.91 (5) Pb(II) ⁽²⁾ -O ₂ : 2.77 (5)	<2.42>
Pb(II)-Pb(II)	{	3.79 ×2	{	$Pb(II)^{(1)}-Pb(II)^{(1)}:3.86 (4)$ $Pb(II)^{(2)}-Pb(II)^{(2)}:3.74 (4)$	
Pb(IV)-Pb(IV)	{	3.283 ×2	{	3.40 (7) 3.16 (7)	
$\begin{array}{l} O_{1a} - Pb(II)^{(1)} - O_{1} \\ O_{2'} - Pb(II)^{(1)} - O_{1} \\ O_{2'a} - Pb(II)^{(1)} - O_{1} \\ Pb(II)^{(1)} - O_{1a} - Pb \\ Pb(II)^{(1)} - O_{2'} - Pb \\ Pb(IV) - O_{2} - Pb(IV) \\ \end{array}$	a' a (II) ⁽²⁾ (II) ⁽¹⁾ V)	95° 86° 144° 136° 134° 96°	{	90° (2°) 88° (2°) 142° (4°) 127° (3°) 132° (3°) 95.4° (2°) 100° (2°)	

" $\times n$ signifie que la distance intervient n fois dans le polyèdre de coordination.

^b Entre parenthèses, les écarts-types.

^c Le nombre entre crochets $\langle \rangle$ est la moyenne des distances du polyèdre.

ont été définis: les chaînes $(Pb(IV)O_4)_n$, les pyramides $Pb(II)O_4$, les polyèdres de coordination des atomes d'oxygène, et enfin les groupements tétraèdriques de Pb(II). La figure 1 représente une projection dans le plan (**a**, **b**) de la maille à T = 5 K, les déformations de *a* et *b* étant exagérées sur le dessin pour plus de clarté.

a. Les Chaînes $(Pb(IV)O_4)_n$

La moyenne des distances Pb(IV)–O vaut 2.14 Å à T = 5 K, valeur nettement inférieure à la moyenne à T = 293 K (2.18 Å).

Par rapport aux distances analogues observées dans les oxydes de plomb PbO₂ α et β à température ambiante (2.15–2.17 Å), certaines distances Pb(IV)–O sont "courtes" (2.05 Å), alors que deux autres distances sont "longues" (2.22 et 2.23 Å) et deux ont des valeurs intermédiaires (2.13 et 2.14 Å). On remarque que ce polyèdre est quelque peu analogue à celui observé dans Pb_2O_3 (6) (deux distances "longues de 2.26 et 2.28 Å, une distance courte de 2.08 Å, et trois distances intermédiaires de 2.14, 2.16, et 2.17 Å).

Deux types de distances Pb(IV)-Pb(IV)caractérisent les chaînes $(Pb(IV)-O_4)_n$: 3.16 (7) et 3.40 (7) Å.

La distance courte de 3.16 Å pourrait s'expliquer par une diminution de l'interaction répulsive entre les deux ions Pb(IV) consecutifs de la chaîne,³ cette diminution étant liée à la covalence plus forte de certaines liaisons Pb(IV)–O (2.05 Å). Nous ne pouvons

³ Les valeurs de 3.28 et 3.30 Å trouvées dans les structures de Pb_3O_4 et Pb_2O_3 caractérisent selon certains auteurs (7) une interaction répulsive entre ions Pb^{4+} .

Fig. 1. Structure de Pb₃O₄ à T = 5 K: projection sur le plan (a, b). Liaisons Pb(IV)-O à T = 293 K.

toutefois conclure de manière définitive: les distances Pb(IV)-Pb(IV) ne sont peut-être pas aussi différenciées que ne l'indiquent nos résultats. La cote z de l'atome Pb(IV) étant imprécise, il n'est pas exclu que la valeur correcte soit comprise entre z = 0.241 (diffraction des neutrons) et z = 0.250 (diffraction des rayons X). Dès lors les valeurs des distances Pb(IV)-Pb(IV) seraient plus proches de la valeur moyenne 3.28 Å.

b. Pyramides $Pb(II)O_4$

La moyenne des distances Pb(II)–O (2.42 Å), à T = 5 K, est supérieure à la moyenne à température ambiante (2.37 Å). Mais la distance anormalement courte à la température ambiante (2.21 Å) s'est "allongée" dans la structure à 5 K (2.30 Å). La distance Pb(II)–O la plus courte à 5 K vaut 2.26 Å: on note le meilleur accord⁴ avec les distances Pb(II)–O rencontrées dans les structures des oxydes Pb₂O₃ et PbO α (2).

Les pyramides $Pb(II)O_4$ ont donc subi des

modifications notables: il existe à T = 5 K trois liaisons courtes et voisines (une de 2.26 Å et deux de 2.30 Å) tandis que la liaison "essentiellement ionique" de 2.73 Å à T = 293 K se transforme en deux liaisons distinctes Pb(II)⁽¹⁾-O_{2d} (2.91 Å) et Pb(II)⁽²⁾-O_{2a} (2.77 Å) dont le caractère ionique est encore plus marqué.

c. Polyèdres de Coordination des Atomes d'Oxygène

A température ambiante deux types de polyèdres de coordination des atomes d'oxygène ont été définis caractérisant ainsi deux types d'atomes O_1 et O_2 (2).

A T = 5 K les atomes O₁ sont caractérisés par des liaisons O₁-Pb(IV) de 2.05 Å très différentes des deux liaisons O₁-Pb(II) de 2.30 Å.

Les trois atomes de plomb $Pb(II)^{(1)}$, $Pb(II)^{(2)}$, et Pb(IV) constituent un triangle dont le plan ne contient plus l'atome d'oxygène O_1 (ce qui était le cas à T = 293 K).

Les atomes O_2 (cotes 0 et $\frac{1}{2}$) ont comme plus proches voisins deux atomes de plomb tétravalents et deux atomes de plomb divalents. Deux types de tétraèdes irréguliers peuvent être distingués (au lieu d'un seul à la température ambiante) suivant la valeur de la liaison ionique O_2 -Pb(II). Les polyèdres de coordination ont en outre chacun trois liaisons courtes (deux liaisons O_2 -Pb(IV) de 2.13 Å (ou 2.22 Å) et une liaison O_2 -Pb(II) de 2.26 Å).

d. Les Tétraèdres Irréguliers de Plomb Divalents

Les groupements tétraédriques constitués par les atomes de Pb(II), deux à deux en contact direct et sans atome d'oxygène intermédiaire, sont déformés: deux types de distances Pb(II)-Pb(II) caractérisent chacune de ces configurations (3.86 et 3.74 Å).

5. Conclusion

La structure quadratique de l'oxyde de Pb_3O_4 à T = 293 K présente plusieurs particularités: certaines distances Pb(II)-O sont "trop courtes" et les chaines $(Pb(IV)O_4)_n$ sont reliées entre elles par des atomes de Pb(II)en vis à vis autour de trappes tétraèdriques. A

⁴ Surtout si on tient compte de la contraction thermique.

une température inférieure à 160 K certaines symétries disparaissent (l'axe d'ordre 4 notamment); alors que les angles interatomiques ne subissent pas de modification notable, certaines distances ont changé de manière très nette.

L'atome d'oxygène O_1 joue un rôle particulier au cours de l'évolution de la structure. A T = 293 K, les liaisons O_1 -Pb(II) sont fortement covalentes tandis que les liaisons O_1 -Pb(IV) présenteraient, d'après certains auteurs (7), un caractère ionique important pour de telles liaisons. A T = 5 K, les liaisons O_1 -Pb(II) sont plus longues (covalence moins marquée) tandis que la moyenne des liaisons O_1 -Pb(IV) est plus courte, certaines liaisons étant même "anormalement" courtes (2.05 Å) et donc fortement covalentes.

Ainsi on observe une nouvelle configuration électronique qui pourrait d'ailleurs expliquer le changement de couleur en fonction de la température: orange à la température ambiante, Pb_3O_4 devient jaune vers 160 K et jaune-vert à 5 K.

En tout état de cause, l'entourage "anormal" des atomes de Pb(II) doit jouer un rôle prépondérant au cours du changement de structure de Pb_3O_4 .

Remerciements

Nous remercions vivement Monsieur P. Meriel du CEN de Saclay pour la réalisation des diagrammes de diffraction des neutrons et l'aide apportée lors de cette étude, ainsi que MM. Le Person et J. C. Toledano pour le test d'optique nonlinéaire réalisé au CNET de Bagneux.

Bibliographie

- P. GARNIER, G. CALVARIN ET D. WEIGEL, C. R. Acad. Sci. C 275, 211 (1972).
- 2. J. R. GAVARRI, T. èse, Paris (1973); J. R. GAVARRI ET D. WEIGEL, J. Solid State Chem., à paraître.
- 3. J. R. GAVARRI ET D. WEIGEL, C.R. Acad. Sci. C 275, 1267 (1972).
- 4. G. CALVARIN ET D. WEIGEL, *Rev. Sci. Instrum.*, à paraître.
- 5. P. MERIEL, Communication personnelle.
- J. BOUVAIST ET D. WEIGEL, Acta Crystallogr. A 26, 510 (1970).
- H. L. WELLS, "Structural Inorganic Chemistry," Oxford Univ. Press, London (1962); B. DICKENS J. Inorg. Nucl. Chem. 17, 1503 (1965).